Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory
نویسندگان
چکیده
منابع مشابه
Asymptotic Equivalence Theory for Nonparametric Regression With Random Design
This paper establishes the global asymptotic equivalence between the nonparametric regression with random design and the white noise under sharp smoothness conditions on an unknown regression or drift function. The asymptotic equivalence is established by constructing explicit equivalence mappings between the nonparametric regression and the white-noise experiments, which provide synthetic obse...
متن کاملHypothesis Testing for High-dimensional Sparse Binary Regression.
In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which do...
متن کاملConfidence intervals and hypothesis testing for high-dimensional regression
Fitting high-dimensional statistical models often requires the use of non-linear parameter estimation procedures. As a consequence, it is generally impossible to obtain an exact characterization of the probability distribution of the parameter estimates. This in turn implies that it is extremely challenging to quantify the uncertainty associated with a certain parameter estimate. Concretely, no...
متن کاملRegression Analysis under Inverse Gaussian Model: Repeated Observation Case
Traditional regression analyses assume normality of observations and independence of mean and variance. However, there are many examples in science and Technology where the observations come from a skewed distribution and moreover there is a functional dependence between variance and mean. In this article, we propose a method for regression analysis under Inverse Gaussian model when th...
متن کاملModel Selection in Gaussian Regression for High-dimensional Data
We consider model selection in Gaussian regression, where the number of predictors might be even larger than the number of observations. The proposed procedure is based on penalized least square criteria with a complexity penalty on a model size. We discuss asymptotic properties of the resulting estimators corresponding to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2014
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2014.2343629